Σάββατο 13 Ιουλίου 2024

Σε ποιό ύψος αρχίζει το διάστημα;


Ποιό είναι το όριο μεταξύ ατμόσφαιρας και διαστήματος; Το μέχρι τώρα όριο των 100 χιλιομέτρων από την επιφάνεια τςη Γης θα πρέπει πιθανώς να προσαρμοστεί στα 80 χιλιόμετρα.


Σε ποιό ύψος τελειώνει η ατμόσφαιρα της Γης και αρχίζει το διάστημα;

Ζούμε στην επιφάνεια της Γης, θωρακισμένοι από το κενό του διαστήματος με μια κουβέρτα αέρα. Γνωρίζουμε όμως ότι όσο ψηλότερα ανεβαίνουμε, η ατμόσφαιρα του πλανήτη μας γίνεται όλο και αραιότερη. Επομένως είναι λογικό ότι σε κάποιο υψόμετρο, ο αέρας να γίνεται τόσο αραιός που στην ουσία η ατμόσφαιρα τελειώνει και αρχίζει το διάστημα.

Σε ποιό υψόμετρο λοιπόν αρχίζει το διάστημα;

Αυτό εξαρτάται από το τι εννοούμε με τον όρο «διάστημα», ένας όρος που είναι τρομερά δύσκολο να οριστεί. Προς το παρόν, η γενικά αποδεκτή γραμμή οριοθέτησης είναι τα 100 χιλιόμετρα πάνω από την επιφάνεια της Γης, αλλά αυτή η τιμή δεν έχει καθοριστεί με αυστηρό μαθηματικό ή φυσικό τρόπο. Επιπλέον, όταν εφαρμόζεται η αυστηρότητα, τότε η οριοθέτηση του διαστήματος στο ύψος των 80 χιλιιομέτρων είναι αναμφισβήτητα μια καλύτερη τιμή για τις περισσότερες χρήσεις.

Τα μόρια του αέρα γύρω μας κινούνται διαρκώς και διασκορπίζονται σχεδόν ομοιόμορφα. Όμως, στην μεγάλη εικόνα ενός πλανήτη όπως η Γη, η κατάσταση είναι διαφορετική. Η βαρύτητα και η πίεση παίζουν ρόλο στην συγκράτηση της ατμόσφαιρας.

Πόση είναι η μάζα μιας κατακόρυφης κυλινδρικής στήλης ατμόσφαιρας, η βάση της οποίας βρίσκεται στην επιφάνεια της Γης και έχει εμβαδόν 1 cm2; Θεωρείστε την επιτάχυνση της βαρύτητας σχεδόν σταθερή συναρτήσει του ύψους της ατμόσφαιρας και ίση με go=10 m/sec2. Η ατμοσφαιρική πίεση στην επιφάνεια της Γης είναι 105 Pa.

Ένας μικρός όγκος της ατμόσφαιρας κοντά στην επιφάνεια της Γης – ας πούμε, ένα κυβικό εκατοστό – αισθάνεται την πίεση όλων των κυβικών εκατοστών αερίου πάνω από αυτό (που έχουν μάζα σχεδόν ένα κιλό), που το συμπιέζει και το κάνει πιο πυκνό. Όσο πιο ψηλά ανεβαίνετε, τόσο λιγότερο υπερκείμενο αέριο πιέζει προς τα κάτω, μειώνοντας την πίεση του αέρα του περιβάλλοντός σας. Αυτός είναι ο λόγος που ο αέρας είναι λιγότερο πυκνός σε μια βουνοκορφή σε σχέση με το επίπεδο της θάλασσας. Αυτό δημιουργεί προβλήματα στους ορειβάτες, ειδικά όταν ανεβαίνουν σε βουνά όπως το Έβερεστ.

Ο αραιός αέρας είναι επίσης πρόβλημα και για τα αεροπλάνα. Πετούν λόγω της άντωσης, μιας δύναμης που εξαρτάται από πολλούς παράγοντες, όπως το σχήμα των φτερών, της ταχύτητας του αεροπλάνου και κυρίως, της πυκνότητας του περιβάλλοντος αέρα. Σε αρκετά μεγάλο ύψος, απλά δεν υπάρχει αρκετός αέρας για να δημιουργήσει την απαραίτητη δύναμη ώστε να κρατήσει το αεροπλάνο ψηλά.

Στα τέλη της δεκαετίας του 1950, ο Ούγγρος μηχανικός και φυσικός Theodore von Kármán υπολόγισε πόση άντωση προκύπτει από τον αέρα σε σχέση με το ύψος και την ταχύτητα του αεροσκάφους, δεδομένων των μηχανικών ορίων της εποχής. Ένας τρόπος για να δημιουργήσει ένα αεροσκάφος περισσότερη άντωση είναι να κινείται πιο γρήγορα, αλλά ο von Kármán διαπίστωσε ότι σε ύψος περίπου 84 km, επιτυγχάνεται ένα περίεργο όριο: για να δημιουργήσει αρκετή άντωση πάνω από αυτό το ύψος, ένα αεροσκάφος έπρεπε να κινηθεί τόσο γρήγορα που θα καιγόταν. Σε αυτές τις ταχύτητες οι υψηλές θερμοκρασίες που δημιουργούνται από την τριβή με την έστω και πολύ αραιή ατμόσφαιρα, θα μετέτρεπαν ένα αεροσκάφος σε πύρινο μετεωρίτη. Για ιστορικούς λόγους, αυτό το όριο ονομάζεται τώρα γραμμή Kármán. Αυτό είναι σίγουρα ένα φυσικό όριο, όπου σταματά η αεροδυναμική και αρχίζει η αστροναυτική.

Ας έχουμε υπόψιν ότι ο von Kármán δεν προσπαθούσε να προσδιορίσει την άκρη της ατμόσφαιρας, αλλά ερευνούσε το πόσο ψηλά μπορούσε να πετάξει ένα αεροσκάφος. Στη συνέχεια, μετά τον von Kármán, ο αστρονόμος Robert Jastrow ακολούθησε (κυριολεκτικά) την προσέγγιση από πάνω προς τα κάτω και πρότεινε να γίνουν αποδεκτά τα 160 km ως η γραμμή μετάβασης μεταξύ ατμόσφαιρας και διαστήματος. Πρότεινε αυτό το υψόμετρο επειδή ήταν το κατά προσέγγιση χαμηλότερο όριο για το ύψος της τροχιάς ενός δορυφόρου. Αν και πολλές άλλες μελέτες κατά τη διάρκεια των δεκαετιών έχουν υποδείξει διαφορετικά υψόμετρα, ένα όριο 100 χιλιομέτρων (υψηλότερο από τον αρχικό υπολογισμό του von Kármán και χαμηλότερο από την πρόταση του Jastrow) είναι πλέον τόσο κοντά στο επίσημο όριο, ειδικά μετά την υιοθέτησή του από την World Air Sports Federation, που ειδικεύεται σε αεροναυτικά και αστροναυτικά ταξίδια.

Είναι σωστή αυτή η προσέγγιση; Κάτω από αυτή τη θεωρητική ζώνη οριοθέτησης εναέριου χώρου, ένα σκάφος θα έπρεπε να ταξιδεύει με σχεδόν τροχιακή ταχύτητα για να δημιουργήσει κάποια δύναμη άντωσης.


Με ποιά ταχύτητα κινείται ένας δορυφόρος που διαγράφει κυκλική τροχιά γύρω από τη Γη, σε ύψος 100 km πάνω από την επιφάνειά της; Υποθέτουμε ότι σ’ αυτό το ύψος ο δορυφόρος δεν επηρεάζεται από την γήινη ατμόσφαιρα. Δίνονται η ακτίνα της Γης R=6400 km και η ένταση του πεδίου βαρύτητας στην επιφάνεια της Γης go=10 m/sec2.

Ένα αντικείμενο διατηρεί μια σταθερή κυκλική τροχιά γύρω από τη Γη, όταν η δύναμη της βαρύτητας είναι κάθετη στην ταχύτητα παίζοντας τον ρόλο της κεντρομόλου δύναμης. Αν διαγράφει κυκλική τροχιά σε ύψος 100 χιλιομέτρων πάνω από την επιφάνεια της Γης, τότε πρέπει να κινείται με ταχύτητα περίπου οκτώ χιλιόμετρα ανά δευτερόλεπτο. Αυτή είναι αρκετά μεγάλη ταχύτητα για να προκαλέσει έντονη ή και καταστροφική θέρμανση, αν ένας δορυφόρος πέσει πολύ χαμηλά.

Διαβάστε ολόκληρο το άρθρο εδώ:

https://physicsgg.me/2024/07/06/%cf%83%ce%b5-%cf%80%ce%bf%ce%b9%cf%8c-%cf%8d%cf%88%ce%bf%cf%82-%ce%b1%cf%81%cf%87%ce%af%ce%b6%ce%b5%ce%b9-%cf%84%ce%bf-%ce%b4%ce%b9%ce%ac%cf%83%cf%84%ce%b7%ce%bc%ce%b1/

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Το blog TEO O ΜΑΣΤΟΡΑΣ ουδεμία ευθύνη εκ του νόμου φέρει σχετικά σε άρθρα που αναδημοσιεύονται από διάφορα ιστολόγια. Δημοσιεύονται όλα για την δική σας ενημέρωση.